Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy
نویسندگان
چکیده
Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
منابع مشابه
Transient excited-state absorption and gain spectroscopy of a two-photon absorbing probe with efficient superfluorescent properties.
The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4'-(4,4' (1E,1'E)-2,2'-(9,9-bis(2- (2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipiperazine-1-carboxylate (1) are reported. The steady-state linear absorption and fluorescence spect...
متن کاملExcited-State Dynamics of Diindenoperylene in Liquid Solution and in Solid Films
The excited-state dynamics of diindenoperylene (DIP) are investigated in dilute solution and in a solid film at room temperature using picosecond photoluminescence and femtosecond transient absorption measurements. In solution, DIP undergoes a rapid (0.89 ns) internal conversion back to its ground state, with no detectable formation of triplet or other long-lived states. In the solid state, mul...
متن کاملCytosine excited state dynamics studied by femtosecond fluorescence upconversion and transient absorption spectroscopy
We report a femtosecond spectroscopic study of the DNA base cytosine in aqueous solution at room temperature. Two different experimental techniques were used, fluorescence upconversion and transient absorption, providing complementary information on the excited state relaxation. While the fluorescence decay is clearly bi-exponential, with an ultrafast (0.2 ps) and a slower (1.3 ps) component, t...
متن کاملPhotoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy.
The excited state dynamics of two generations perylenediimide chromophores substituted in the bay area with dendritic branches bearing triphenylamine units as well as those of the respective reference compounds are investigated. Using single photon timing and multi-pulse femtosecond transient absorption experiments a direct proof of a reversible charge transfer occurring from the peripheral tri...
متن کاملUltrafast Photodissociation Dynamics of Nitromethane.
Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of co...
متن کامل